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Scattering and Mode Conversion of Guided
Modes by a Spherical Object

in an Optical Fiber

NAGAYOSHI MORITA, MEMBER, IEEE, AND NOBUAKI KUMAGAI, SENIOR~MBER, IEEE

Abstnact-Tlw scattering and the mode conversion of the guided modes
due to a spberfcal object in a step-index optfcaf fiber is anafyzed theoreti-
cally. W fnddent ffber mode fa expanded in terms of the spherical vector
wave functfq and the scattered ftekfs are obtafned by applying the

boundary condftbms on the surface of the object with the aid of these
expansions, w expressions for the total scattered power and the mode

conversion coefficients are given. As an example, the scattering and nmde

conversion caused by a spheti afr bubble are evaluated mttnericaffy.

I. INTRODUCTION

T HE PROBLEM OF scattering and mode conversion

of guided modes in an optical waveguide due to

irregularities or impurity objects is of great interest from

both the theoretical and practical points of view [1]-[7].

This paper deals with the scattering and mode conversion

of the guided modes in a step-index optical fiber by a

spherical object whose diameter is of the order of the

wavelength of the incident light.

To treat the problem theoretically, the incident fiber

mode is expanded in terms of the spherical vector wave

functions, which makes it possible to use the conventional

analytical method of obtaining the scattered fields by

applying the boundary conditions on the surface of the

spherical object. Since the refractive index difference be-

tween core and cladding is very small for most of the

practically used step-index fibers, the multiple scattering

effect caused by the reflection of the primary scattered

waves at the core-cladding interface is ignored for simplic-

ity.

The expressions for the total scattered power and the

mode conversion coefficients are given. AS a typical ex-

ample, the scattering and mode conversion caused by a

spherical air bubble in the core region are evaluated

numerically.

II. EXPANSION OF THE GUIDED MODES IN TERMS

OF THE SPHERICAL VECTOR WAVE FUNCTIONS

The electric and magnetic fields of the linearly

polarized (LP) modes of the fiber whose transverse elec-

tric field is polarized linearly in the y direction can be
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written in the form [8]
(1)
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+ J,. l(h) ::.s (Ml)]
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1(Jv+,(hp)::(v+l)4-J,_, (hp)::(v-l)q) e-~flz
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in the core region, whereas in the cladding region,
(1)

J,(hR)

‘(2) = A @l)(jyR)
[

Z@l)(jyp) :!’ v+
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+ H:! ~(jy~) ::5(V- 1)+) ].-j” (3)

Cos
– ‘$! l(~YP) sin (v-l)+)]

~ –_iBz, (4)

In the foregoing equations, p, ~, and z are the circular-

cylindrical coordinates with z axis being the center axis of

the fiber. ix, ~, and i= represent the unit vectors directed

along the positive x, y, and z axes, respectively, Jv(hp) and

HflJ(jyp) are Bessel function and Hankel function of the

fh’st kind, respectively, where v is zero or a positive

:::~-y=wkl=.~=.lko
= .2.., .0 is the free-space wavenumber, and

/3 is the propagation constant. .1 = Vc,/co and

n,= = are the refractive-indices of the core and

cladding, respectively. A is the mode amplitude and R is
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the core radius. The superscripts (1) and (2) on the left-

hand side of the equations correspond to the upper and

lower functions of @ on the right-hand side of the equa-

tions, respectively.

First, the center of the spherical object is assumed to be

located at an arbitrary point 01 on the x axis apart from

the origin O by a distance 10(as shown in Fig. 1) in which

the z axis corresponds to the fiber axis. By using the

addition theorem of Bessel functions, the mode fields

given by (1), (2) and (3), (4) can be expressed in terms of

the circular-cylindrical coordinates (pl, +,, Zl) whose origin

coincides with 01 and zl axis is parallel to the z axis. The

electric field (1) in the core region, for example, then

becomes

+&

where

(.Jv_.(hlo)+(- l)’Jy+,(h/o))

*\l)(r*,s)

(J,-, (%)-(- l)”J.+S(WJ)

W\2)(r1,s)

((JJ-.$).J,-,(MJ-(- l)TP+J$)J,+.(MJ)

(5)

(6)

In the foregoing equations, r, denotes the vector distance
from the origin 01 of the spherical coordinates (rl, 01,@l)

as shown in Fig. 1, s is a positive integer including zero,

and tl~n indicates the Kronecker’s delta.

Let us introduce now the spherical vector wave func-

tions Ml!) and N$) defined as [9]
omn omn

(7)

where z~~(kr) represents the spherical Bessel functions

j.(kr), n.(kr), h~l)(kr), and h$2~(kr) for i= 1, 2, 3, and 4,
respectively, and P~m(cos0) denotes the associated
Legendre function. As long as weakly guiding fiber modes
[8] are considered, the electromagnetic fields of the modes
@ven by (l), (2) and (3), (4) can be expressed in good
accuracy in terms of the vector functions M and N in the
form [11]

Fig. L System of coordinates used for the analysis.

where COW and DOm~ are the expansion coefficients and

the choice of i depends upon the type of field being

considered. 13y using the cylindrical wave functions ex.

pressed in spherical coordinates [10] and the orthogonality

properties of the function Ml and N [12], it can be shown

that the expansion for the electric fields of the guided

mode in the core region polarized linearly in they direc-

tion is given by the following equation [13].

where
(1) (1) (1)

(1) (1)

=jrm(F(flAl + G ‘aAz) (11)

(1) (1) (1)

and I’m, W(2) F(2, G ~, Al, and A2 are given in the
Append#”

Similar expression is also obtained for the electric field

in the ~~dding regio~lin which case k, is replaced by kz,
~ (1)

and P(2) (s) and Q (2)(s) are replaced by P (3 (s) and
~ (1)

Q (2)(s), respectively, given by

-(-l)S(v+s)Hj!j~(jylo)}. (12)

The corresponding expressions for the magnetic field in

both the core and the cladding regions are automatically

determined from (9).

Thus far, we have derived the expansion formula of the

guided modes whose transverse electric field is polarized

linearly in they direction. A similar expansion formula of

the guided modes whose transverse electric field lies in the

x direction can be obtained by the same procedure [13]. It

has been also assumed so far that the center of the

spherical object, i.e. the origin 0} of the spherical coordi-

nates is on the x axis. However, we can treat the more

general case where the center of the spherical object is

located at an arbitrary position in the transverse (W)

plane by rotating the coordinate system and superposing

both x and y polarized modes.

III. SCATTERED Wi%vE FROM A SmENcM_. ChuEcr

Let us consider the scattering of the incident fiber mode

by a spherical object of radius a. It is assumed that the
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electric field of the incident guided mode is given by (10).

Let the scattered and the transmitted fields U?, W and U?,

W, respectively, be expressed in the following form by

means of the functions M and N:

‘;=~~o$0(-~clm ‘l ‘d; ‘l!n) (13)

where the subscripts 1 and 3 associated with k and p in

(14) correspond to the outer and inner regions of the

spherical object, respectively. From the boundary condi-

tions at rl = a

i,, X (lEkc+ Es) = i,, X IE’, ir, X (O-Oh’+ W) = i,, X U-U’ (15)

we obtain

n2 CLADDING

m

Fig. 2. Inffuence. of higher order scattered waves.

IV. MODE CONVERSION COEFFICIENTS

Let us express both guided and radiation modes in the

following simplified form:

&p=(ew + ew)e-%’, !JCX= (hw+ hw)e-jfk’ (20)

where the subscripts t and z indicate the transverse and

the longitudinal components, respectively, and the mode

number (m, n) is represented simply by one term p, for

brevity. For the radiation modes, &P and 9G~ are func-

tions of spectrum { as well as K, but J is dropped for

simplicity. The orthogonality relations which will be used

in our analysis are [8]

where J( e ,f X hJ)”izdS
S* p

q=-
p3.LJ~po)[~o&(~o)]’ – lJdn(Po)[ ~PoA(~Po)]’

W.(~~o)[poh$2)( ~o)]’ – plh$z)(~o)[ ~poj.(~po)]’
[

P,
2Pp—I pxl %%’ for guided modes

P3A(Po) [ ~fJO.M~PO)]’ – @%(~pO)[poA(~o)]’

‘1

%(wpfi w-- Wp,p>S22=– for radiation modes

psh\2)(f30)[ ~pOjA~f%)]’ – PNNVPJ [PA’)(PJ ]’
P

(21)

where the superscript “inc” stands for the incident mode

fields and the prime notations refer to differentiation with

respect to the total argument of the spherical function in

the brackets. It should be noted that $21and Qz given by

(17) coincide with the well-known Mie coefficients. Only a

small fraction of scattered wave (the wave which is

scattered within the shaded region shown in Fig, 2) is

reflected from the core-cladding boundary and illuminates

the object again, giving rise to the secondary scattered

wave and so on. However, these multiple scattering effects

are ignored in the present analysis since the refractive

index difference between core and cladding is remarkably

small in an usual step-index fiber; furthermore, the solid

angle of the shaded region shown in Fig. 2 is also usually

very small,

The total scattered power is given by the following

integral over an arbitrary spherical surface S, of radius

r, >a:

Ps=~ ‘ R,~ (IESX W*)”i,,dS (18)
s,

which, by using the orthogonality relations M and N leads
to

where S1 represents an infinite transverse cross section

plane. Pp is the power carried by the p mode, rS(J) stands

for the Dirac delta function, the asterisk indicates com-

plex conjugation, and SJJ) is + 1 or -1 depending on

whether /3Wis real or imaginary, respectively.

Suppose that the guided mode labeled ~’ propagating in

the positive z direction is scattered by a spherical object

whose center is located at an arbitrary point 01 on the

transverse plane z =0, Consider two infinite transverse

cross sections S1 and Sz at z = Zl( < O) and z = Zz( > O),

respectively, outside the spherical object as illustrated in

Fig, 3, The scattered fields can be expanded on the planes

S1 and Sz in terms of the modes as follows:

(22)

where the superscripts + and – represent the mode fields

traveling in the positive and the negative z directions,

respectively, We choose the volume o bounded by the

surface So of the spherical object, the two arbitrary cross

sectional planes S1 and Sz, and the cylindrical surface S~

at infinity. Then, from the Lorentz reciprocity principle in

connection with the volume u, we get the following equa-

tion:

J (&, X W* + E’” X %p).indS=O (23)
s~+s~+s~

(19) owing to the fact that there are no sources in the region o
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Fig. 3. Spherieal surface SOand surfaces S1, S2, and Sm by which SOis
enclosed.

and that the surface integral over S@ vanishes. If &P and

%P in (23) are the fields of the mode traveling m the

positive z direction (i.e. &J and 5$), the integrals over

S1 and S’z can be carried out using the orthogonality

relations of the modes, and hence ap+ and Rp~ can be

obtained from the integral over the remaining surface SO

of the object, Similarly, if the mode traveling in the

negative z direction (&; and 5$) is used, ap- and Rp–

can be obtained from the integral over SW Namely, pro-

vided that BP is real,

provided that 8P is imaginary. The upper or lower sign is

to be taken throughout. By using the expansions for &K,

%, and E’, Win terms of M and N given, for example, by

(10) and (13), together with the orthogonality relations of

M and N, the integrations in (24) and (25) can be carried

out, If /3P is real, for example, the result is

api =
rP 6LI v, $0 ~$o i~~ 111 ~P

~ (Q1capcA+$2,d&f’dL’). (26)

V. NUMERICAL EXAMPLE

As an example of application, let us calculate nuzneri-

cally the scattering and the mode conversion of the fiber

mode due to a spherical air bubble of radius a in a core

region of the step-index fiber. Let

n,= 1.5, n2=(l –o.oo5)n1,n3= l,kr$?= 133.5

-Fand hence V- nl – rzz koR = 20. It is assumed that the

incident mode is an LPO1 mode whose electric field is

given by 601. The power of all modes Pp is defined as

unity (1 w).

Fig. 4 shows the total scattered power calculated from

(19) and the mode conversion coefficients given by (26) as
a function of koa for the case of 10= O. The mode conver-

sion coefficients Iamn12 between the incident LPO1 mode

and the coupled LP~~ modes are indicated by the symbol

LPJn or LP& in the Figure. The coupling between LPO1

and LPI ~ modes does not occur in the case of 10= O and

hence the curves corresponding to LPfi does not appear in

Fig. 4.

Fig. 4. Mode eonversion coefficients and total scattered power P. (10
- 0),

~ ,0-2

v = 20.0
“a ,o.~

.
~x
A 10-6.

10-8.

0,! 0!5 1!0 ~Q * 5!0

Fig. 5. Mode wnversion coefficients and total scattered power P’.
(JCOIO- 12.0).

TABLE I
SCATTERING COEXWCZSNTS=: COMPARISONwmz RAYLEIOH

SCATTSRZNGAPPROXIMATION

The case of kolo = 12.0 is shown in Fig. 5 where all the

numerical parameters used for the calculation are the

same as those in the case of Fig. 4.

In our numerical example, the relative error of the

scattered power caused by ignoring the effect of multiple

scattering at the core-cladding interface is estimated to be

less than the order of 0(10-6).

Table I shows a numerical comparison of the scattering

coefficient S=(= uC/ na2 where o= is the total scattering

cross section) obtained from (19) and that from the

Rayleigh scattering approximation. As we can see from

the Table, the total scattered power calculated from (19) is

in agreement with that given by the Rayleigh scattering

approximation if the radius of the spherical air bubble is

small enough in comparison with the wavelength, i.e.,

koa<l.

VI. CONCLUSION

The guided mode of a step-index fiber has been ex-

panded in terms of the spherical vector wave functions,

and the scattering and the mode conversion effects caused

by a spherical object have been analyzed theoretically by

applying the conventional boundary conditions on the

surface of the spherical object whose dimension is not
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necessarily small in comparison with a wavelength of the Tz = P~+~ l(COSLI), T3= Pfl+l(cosa). (n – m -t 1)

light. As an example, the scattering and the mode conver- (A7)
sion due to a spherical air bubble have been calculated

U1(rn)=gnP(l)(m), ~Jm) = –jgnQ(l)(m),
numerically.

The technique of mode expansion in terms of the vl(rn)=gnP@)(rrl), ~Jtn) =jgnQ(2)(m) (A8)

spherical vector wave functions shown in this paper seems

to be useful in analyzing a wide variety of similar scatter-
gn=(zn+ 1)/{2n(n+ l)}, cosa=@/k~ (A9)

(1)
ing and mode conversion problems. P(2)(S) =A {J,_,(MJ * (– qsJp+$(~zo)}

APPENDIX Q%)= #{* (Y- S)J,-.(hlo)-(- l)S(v+s)JV+#dO)}.

17~n=(-j)n-m+l(n- m)!/(n+m)! (A1O)
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