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Scattering and Mode Conversion of Guided
Modes by a Spherical Object
in an Optical Fiber
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Abstract—The scattering and the mode conversion of the guided modes
due to a spherical object in a step-index optical fiber is analyzed theoreti-
cally. The incident fiber mode is expanded in terms of the spherical vector
wave functions, and the scattered fields are obtained by applying the
boundary conditions on the surface of the object with the aid of these
expansions. The expressions for the total scattered power and the mode
conversion coefficients are given. As an example, the scattering and mode
conversion caused by a spherical air bubble are evaluated numerically.

I. INTRODUCTION

HE PROBLEM OF scattering and mode conversion

of guided modes in an optical waveguide due to
irregularities or impurity objects is of great interest from
both the theoretical and practical points of view [1]-{7].
This paper deals with the scattering and mode conversion
of the guided modes in a step-index optical fiber by a
spherical object whose diameter is of the order of the
wavelength of the incident light.

To treat the problem theoretically, the incident fiber
mode is expanded in terms of the spherical vector wave
functions, which makes it possible to use the conventional
analytical method of obtaining the scattered fields by
applying the boundary conditions on the surface of the
spherical object. Since the refractive index difference be-
tween core and cladding is very small for most of the
practically used step-index fibers, the multiple scattering
effect caused by the reflection of the primary scattered
waves at the core-cladding interface is ignored for simplic-
ity.

The expressions for the total scattered power and the
mode conversion coefficients are given. As a typical ex-
ample, the scattering and mode conversion caused by a
spherical air bubble in the core region are evaluated
numerically.

II. EXPANSION OF THE GUIDED MODES IN TERMS
OF THE SPHERICAL VECTOR WAVE FUNCTIONS

The electric and magnetic fields of the linearly
polarized (LP) modes of the fiber whose transverse elec-
tric field is polarized linearly in the y direction can be
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written in the form [8]
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In the foregoing equations, p, ¢, and z are the circular-
cylindrical coordinates with z axis being the center axis of
the fiber. i,, i,, and i, represent the unit vectors directed
along the positive x, y, and z axes, respectively, J,(hp) and
H®(jyp) are Bessel function and Hankel function of the
first kind, respectively, where » is zero or a positive

integer, h=\k3~ B2 , y=VB>— K3 , ky=w Ve, pp =n;ky,
ky=wVe,my = nykg, kg is the free-space wavenumber, and
B is the propagation constant. »n, = Ve /¢, and

n,=Ve,/€, are the refractive-indices of the core and
cladding, respectively. 4 is the mode amplitude and R is
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the core radius. The superscripts (1) and (2) on the left-
hand side of the equations correspond to the upper and
lower functions of ¢ on the right-hand side of the equa-
tions, respectively.

First, the center of the spherical object is assumed to be
located at an arbitrary point O, on the x axis apart from
the origin O by a distance /; (as shown in Fig. 1) in which
the z axis corresponds to the fiber axis. By using the
addition theorem of Bessel functions, the mode fields
given by (1), (2) and (3), (4) can be expressed in terms of
the circular-cylindrical coordinates (p,, ¢, z,) whose origin
coincides with O, and z, axis is parallel to the z axis. The
electric field (1) in the core region, for example, then
becomes
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In the foregoing equations, r; denotes the vector distance
from the origin O, of the spherical coordinates (r,8,,¢,)
as shown in Fig. 1, s is a positive integer including zero,
and §,,, indicates the Kronecker’s delta.

Let us introduce now the spherical vector wave func-
tions MY and N  defined as 91
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where z((kr) represents the spherical Bessel functions
Jo(kP), n,(kr), KO(kr), and BP(kr) for i=1, 2, 3, and 4,
respectively, and PJ*(cos#) denotes the associated
Legendre function. As long as weakly guiding fiber modes
[8] are considered, the electromagnetic fields of the modes
given by (1), (2) and (3), (4) can be expressed in good
accuracy in terms of the vector functions M and N in the
form [11]
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Fig. 1. System of coordinates used for the analysis.

where C,,,, and D, are the expansion coefficients and
the choice of i depends upon the type of field being
considered. By using the cylindrical wave functions ex-
pressed in spherical coordinates [10] and the orthogonality
properties of the function M and N [12], it can be shown
that the expansion for the electric fields of the guided
mode in the core region polarized linearly in the y direc-
tion is given by the following equation [13].
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Appendix, o
Similar expression is also obtained for the electric field
in the c(lz;.ddmg reglon in which case k, is replaced by &,,

and P (s) and Q(2)(s) are replaced by P(2)(s) and
Q (2) (s), respectively, given by
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The corresponding expressions for the magnetic field in
both the core and the cladding regions are automatically
determined from (9).

Thus far, we have derived the expansion formula of the
guided modes whose transverse electric field is polarized
linearly in the y direction. A similar expansion formula of
the guided modes whose transverse electric field lies in the
x direction can be obtained by the same procedure [13]. It
has been also assumed so far that the center of the
spherical object, i.e. the origin O, of the spherical coordi-
nates is on the x axis. However, we can treat the more
general case where the center of the spherical object is
located at an arbitrary position in the transverse (xy)
plane by rotating the coordinate system and superposing
both x and y polarized modes.

III. SCATTERED WAVE FROM A SPHERICAL OBJECT

Let us consider the scattering of the incident fiber mode
by a spherical object of radius a. It is assumed that the
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electric field of the incident guided mode is given by (10).
Let the scattered and the transmitted fields E*, H® and [,
H’, respectively, be expressed in the following form by

means of the functions M and N:
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where the subscripts 1 and 3 associated with k and p in
(14) correspond to the outer and inner regions of the
spherical object, respectively. From the boundary condi-
tions at r,=a
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where the superscript “inc” stands for the incident mode
fields and the prime notations refer to differentiation with
respect to the total argument of the spherical function in
the brackets. It should be noted that {2, and {2, given by
(17) coincide with the well-known Mie coefficients. Only a
small fraction of scattered wave (the wave which is
scattered within the shaded region shown in Fig. 2) is
reflected from the core-cladding boundary and illuminates
the object again, giving rise to the secondary scattered
wave and so on. However, these multiple scattering effects
are ignored in the present analysis since the refractive
index difference between core and cladding is remarkably
small in an usual step-index fiber; furthermore, the solid
angle of the shaded region shown in Fig. 2 is also usually
very small,

The total scattered power is given by the following
integral over an arbitrary spherical surface S, of radius
r>a:

(18)

which, by using the orthogonality relations M and N leads
to
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Fig. 2. Influence of higher order scattered waves.

IV. MobEe CONVERSION COEFFICIENTS

Let us express both guided and radiation modes in the
following simplified form:

&,=(e,+e,)e B I =(h,+ h,,z)e“jﬁt“ (20)

where the subscripts ¢ and z indicate the transverse and
the longitudinal components, respectively, and the mode
number (m,n) is represented simply by one term u for
brevity. For the radiation modes, &, and J(, are func-
tions of spectrum { as well as y, but { is dropped for
simplicity. The orthogonality relations which will be used
in our analysis are [8]

f(e X ht)-i, dS

2P, —= !'Z [ S for guided modes
28,(5)P, "l.B ' 8(§ §8,,, for radiation modes

1)
where S, represents an infinite transverse cross section
plane. P, is the power carried by the u mode, 5(¢) stands
for the Dirac delta function, the asterisk indicates com-
plex conjugation, and S,({) is +1 or —1 depending on
whether B, is real or imaginary, respectively.

Suppose that the guided mode labeled u’ propagating in
the positive z direction is scattered by a spherical object
whose center is located at an arbitrary point O, on the
transverse plane z=0. Consider two infinite transverse
cross sections S; and S, at z=2z,(<0) and z=2z,(>0),
respectively, outside the spherical object as illustrated in
Fig. 3. The scattered fields can be expanded on the planes
S| and S, in terms of the modes as follows:

E=3ar6:+3 [RE6F &
W 1

W= a2+ 3 [ Rz a (22)
where the superscripts + and — represent the mode fields
traveling in the positive and the negative z directions,
respectively. We choose the volume v bounded by the
surface S, of the spherical object, the two arbitrary cross
sectional planes S; and S,, and the cylindrical surface S,
at infinity. Then, from the Lorentz reciprocity principle in
connection with the volume v, we get the following equa-
tion:

(6, XH*+E*XI)i,dS=0  (23)

j:S'o +8,+5;
owing to the fact that there are no sources in the region v
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Fig. 3. Spherical surface S, and surfaces §}, S, and S, by which S, is
enclosed.

and that the surface integral over S, vanishes. If &, and
JC, in (23) are the fields of the mode traveling in the
positive z direction (ie. &, and ('), the integrals over
S, and S, can be carried out using the orthogonality
relations of the modes, and hence ¢} and R, * can be
obtained from the integral over the remaining surface So
of the object. Similarly, if the mode traveling in the
negative z direction (&, and J() is used, 4, and R,
can be obtained from the 1ntegral over S, Namely, pro-
vided that B, is real,

1

a*,R*=——@ (EX*XH +E° xH=*)-i dS (24)
w2 4p“ So( # u ) 1
and

R*=— 4P (5+*><Hs+[Esxf}C+*)zdS (25)

provided that g, is imaginary. The upper or lower sign is
to be taken throughout By using the expansions for &,
‘JC and E°, H’ in terms of M and N given, for example, by
(10) and (13), together with the orthogonality relations of
M and N, the integrations in (24) and (25) can be carried
out. If B, is real, for example, the result is

a o w (r+m)! 1
o rPwkipy T mmo (n—m)! g,
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V. NUMERICAL EXAMPLE

As an example of application, let us calculate numeri-
cally the scattering and the mode conversion of the fiber
mode due to a spherical air bubble of radius a4 in a core
region of the step-index fiber. Let

ny=15,n,=(1-0.005)n,n,=1,keR=133.5

and hence V=1n?—n2 k,R=20. It is assumed that the
incident mode is an LP; mode whose electric field is
given by &g;. The power of all modes P, is defined as
unity (1 W).

Fig. 4 shows the total scattered power calculated from
(19) and the mode conversion coefficients given by (26) as
a function of kya for the case of /,=0. The mode conver-
sion coefficients |a,,,[> between the incident LP,, mode
and the coupled LP;;, modes are indicated by the symbol
LP;, or LP,, in the Figufe. The coupling between LPy,
and LP,; modes does not occur in the case of /,=0 and
hence the curves corresponding to LPj; does not appear in
Fig. 4.
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Fig. 4 Mode
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Fig. 5. Mode conversion coefficients and total scattered power P
(kolo=12.0).

TABLEI
SCATTERING COEFFICIENT S,: COMPARISON WITH RAYLEIGH
SCATTERING APPROXIMATION

The value
obtained from (1%)

0 6972x107 7
o 1115x10” ¢
0 43a0x10” %
0 6855x10" %
0 4876x107 2
0 2000x10"

Rayleigh
Ke# | scattering

001 | 0 6873x10°°
0.02 | 0 1116x10"¢
0.05 | 0 4358x10”%
0 10| o0 6973x107%
030 0 seasx10”®
0 50| 0 4358x107"

The case of kyly=12.0 is shown in Fig. 5 where all the
numerical parameters used for the calculation are the
same as those in the case of Fig. 4.

In our numerical example, the relative error of the
scattered power caused by ignoring the effect of multiple
scattering at the core-cladding interface is estimated to be
less than the order of 0(1079).

Table I shows a numerical comparison of the scattering
coefficient S.(=0,/ma* where o, is the total scattering
cross section) obtained from (19) and that from the
Rayleigh scattering approximation. As we can see from
the Table, the total scattered power calculated from (19) is
in agreement with that given by the Rayleigh scattering
approximation if the radius of the spherical air bubble is
small enough in comparison with the wavelength, i.e.,
koakl.

VL

The guided mode of a step-index fiber has been ex-
panded in terms of the spherical vector wave functions,
and the scattering and the mode conversion effects caused
by a spherical object have been analyzed theoretically by
applying the conventional boundary conditions on the
surface of the spherical object whose dimension is not

CONCLUSION
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necessarily small in comparison with a wavelength of the
light. As an example, the scattering and the mode conver-
sion due to a spherical air bubble have been calculated
numerically.

The technique of mode expansion in terms of the
spherical vector wave functions shown in this paper seems
to be useful in analyzing a wide variety of similar scatter-
ing and mode conversion problems.

APPENDIX
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T,=Pr* Y (cosa), T,=Pr (cosa)(n—m+1)

(A7)

Uy(m)=g,PO(m),  Uy(m)=—jg,0V(m),

Vi(m)=g,PP(m),  Vy(m)=jg,0P(m) (A8
=2n+1)/{2n(n+1)},cosa=B/k,  (A9)
szg(S) A{ »—-s(hlo) + (— l)JJv+s(hlo)}
1))
0D (s)=2- { + (v =3)J,_,(hlo) = (= 1)’ (r +5)J, . ,(hlp) }.
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